3.598 \(\int \frac{(a+b \tan (e+f x))^3}{(d \sec (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=146 \[ -\frac{2 b \sec ^2(e+f x) \left (2 \left (a^2-2 b^2\right )+a b \tan (e+f x)\right )}{3 f (d \sec (e+f x))^{3/2}}+\frac{2 a \left (a^2+6 b^2\right ) \sec ^2(e+f x)^{3/4} F\left (\left .\frac{1}{2} \tan ^{-1}(\tan (e+f x))\right |2\right )}{3 f (d \sec (e+f x))^{3/2}}-\frac{2 (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{3 f (d \sec (e+f x))^{3/2}} \]

[Out]

(2*a*(a^2 + 6*b^2)*EllipticF[ArcTan[Tan[e + f*x]]/2, 2]*(Sec[e + f*x]^2)^(3/4))/(3*f*(d*Sec[e + f*x])^(3/2)) -
 (2*(b - a*Tan[e + f*x])*(a + b*Tan[e + f*x])^2)/(3*f*(d*Sec[e + f*x])^(3/2)) - (2*b*Sec[e + f*x]^2*(2*(a^2 -
2*b^2) + a*b*Tan[e + f*x]))/(3*f*(d*Sec[e + f*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.124466, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {3512, 739, 780, 231} \[ -\frac{2 b \sec ^2(e+f x) \left (2 \left (a^2-2 b^2\right )+a b \tan (e+f x)\right )}{3 f (d \sec (e+f x))^{3/2}}+\frac{2 a \left (a^2+6 b^2\right ) \sec ^2(e+f x)^{3/4} F\left (\left .\frac{1}{2} \tan ^{-1}(\tan (e+f x))\right |2\right )}{3 f (d \sec (e+f x))^{3/2}}-\frac{2 (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{3 f (d \sec (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x])^3/(d*Sec[e + f*x])^(3/2),x]

[Out]

(2*a*(a^2 + 6*b^2)*EllipticF[ArcTan[Tan[e + f*x]]/2, 2]*(Sec[e + f*x]^2)^(3/4))/(3*f*(d*Sec[e + f*x])^(3/2)) -
 (2*(b - a*Tan[e + f*x])*(a + b*Tan[e + f*x])^2)/(3*f*(d*Sec[e + f*x])^(3/2)) - (2*b*Sec[e + f*x]^2*(2*(a^2 -
2*b^2) + a*b*Tan[e + f*x]))/(3*f*(d*Sec[e + f*x])^(3/2))

Rule 3512

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(d^(2
*IntPart[m/2])*(d*Sec[e + f*x])^(2*FracPart[m/2]))/(b*f*(Sec[e + f*x]^2)^FracPart[m/2]), Subst[Int[(a + x)^n*(
1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] &&
 !IntegerQ[m/2]

Rule 739

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(a*e - c*d*x)*(a
 + c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[1/((p + 1)*(-2*a*c)), Int[(d + e*x)^(m - 2)*Simp[a*e^2*(m - 1) -
 c*d^2*(2*p + 3) - d*c*e*(m + 2*p + 2)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^
2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 780

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(((e*f + d*g)*(2*p
 + 3) + 2*e*g*(p + 1)*x)*(a + c*x^2)^(p + 1))/(2*c*(p + 1)*(2*p + 3)), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(c*
(2*p + 3)), Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, p}, x] &&  !LeQ[p, -1]

Rule 231

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2*EllipticF[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(3/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{(a+b \tan (e+f x))^3}{(d \sec (e+f x))^{3/2}} \, dx &=\frac{\sec ^2(e+f x)^{3/4} \operatorname{Subst}\left (\int \frac{(a+x)^3}{\left (1+\frac{x^2}{b^2}\right )^{7/4}} \, dx,x,b \tan (e+f x)\right )}{b f (d \sec (e+f x))^{3/2}}\\ &=-\frac{2 (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{3 f (d \sec (e+f x))^{3/2}}+\frac{\left (2 b \sec ^2(e+f x)^{3/4}\right ) \operatorname{Subst}\left (\int \frac{(a+x) \left (\frac{1}{2} \left (4+\frac{a^2}{b^2}\right )-\frac{3 a x}{2 b^2}\right )}{\left (1+\frac{x^2}{b^2}\right )^{3/4}} \, dx,x,b \tan (e+f x)\right )}{3 f (d \sec (e+f x))^{3/2}}\\ &=-\frac{2 (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{3 f (d \sec (e+f x))^{3/2}}-\frac{2 b \sec ^2(e+f x) \left (2 \left (a^2-2 b^2\right )+a b \tan (e+f x)\right )}{3 f (d \sec (e+f x))^{3/2}}+\frac{\left (a \left (6+\frac{a^2}{b^2}\right ) b \sec ^2(e+f x)^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{x^2}{b^2}\right )^{3/4}} \, dx,x,b \tan (e+f x)\right )}{3 f (d \sec (e+f x))^{3/2}}\\ &=\frac{2 a \left (a^2+6 b^2\right ) F\left (\left .\frac{1}{2} \tan ^{-1}(\tan (e+f x))\right |2\right ) \sec ^2(e+f x)^{3/4}}{3 f (d \sec (e+f x))^{3/2}}-\frac{2 (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{3 f (d \sec (e+f x))^{3/2}}-\frac{2 b \sec ^2(e+f x) \left (2 \left (a^2-2 b^2\right )+a b \tan (e+f x)\right )}{3 f (d \sec (e+f x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 1.30836, size = 117, normalized size = 0.8 \[ \frac{\sec ^2(e+f x) \left (\left (b^3-3 a^2 b\right ) \cos (2 (e+f x))+2 a \left (a^2+6 b^2\right ) \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )-3 a^2 b+a^3 \sin (2 (e+f x))-3 a b^2 \sin (2 (e+f x))+7 b^3\right )}{3 f (d \sec (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[e + f*x])^3/(d*Sec[e + f*x])^(3/2),x]

[Out]

(Sec[e + f*x]^2*(-3*a^2*b + 7*b^3 + (-3*a^2*b + b^3)*Cos[2*(e + f*x)] + 2*a*(a^2 + 6*b^2)*Sqrt[Cos[e + f*x]]*E
llipticF[(e + f*x)/2, 2] + a^3*Sin[2*(e + f*x)] - 3*a*b^2*Sin[2*(e + f*x)]))/(3*f*(d*Sec[e + f*x])^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.303, size = 342, normalized size = 2.3 \begin{align*}{\frac{2}{3\,f \left ( \cos \left ( fx+e \right ) \right ) ^{2}} \left ( i\sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( fx+e \right ) -1 \right ) }{\sin \left ( fx+e \right ) }},i \right ) \cos \left ( fx+e \right ){a}^{3}+6\,i\sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( fx+e \right ) -1 \right ) }{\sin \left ( fx+e \right ) }},i \right ) \cos \left ( fx+e \right ) a{b}^{2}+i\sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( fx+e \right ) -1 \right ) }{\sin \left ( fx+e \right ) }},i \right ){a}^{3}+6\,i\sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( fx+e \right ) -1 \right ) }{\sin \left ( fx+e \right ) }},i \right ) a{b}^{2}-3\,{a}^{2} \left ( \cos \left ( fx+e \right ) \right ) ^{2}b+{b}^{3} \left ( \cos \left ( fx+e \right ) \right ) ^{2}+\cos \left ( fx+e \right ){a}^{3}\sin \left ( fx+e \right ) -3\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) a{b}^{2}+3\,{b}^{3} \right ) \left ({\frac{d}{\cos \left ( fx+e \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))^3/(d*sec(f*x+e))^(3/2),x)

[Out]

2/3/f*(I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-1)/sin(f*x+e),I)*c
os(f*x+e)*a^3+6*I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-1)/sin(f*
x+e),I)*cos(f*x+e)*a*b^2+I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-
1)/sin(f*x+e),I)*a^3+6*I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-1)
/sin(f*x+e),I)*a*b^2-3*a^2*cos(f*x+e)^2*b+b^3*cos(f*x+e)^2+cos(f*x+e)*a^3*sin(f*x+e)-3*sin(f*x+e)*cos(f*x+e)*a
*b^2+3*b^3)/(d/cos(f*x+e))^(3/2)/cos(f*x+e)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \tan \left (f x + e\right ) + a\right )}^{3}}{\left (d \sec \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^3/(d*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e) + a)^3/(d*sec(f*x + e))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b^{3} \tan \left (f x + e\right )^{3} + 3 \, a b^{2} \tan \left (f x + e\right )^{2} + 3 \, a^{2} b \tan \left (f x + e\right ) + a^{3}\right )} \sqrt{d \sec \left (f x + e\right )}}{d^{2} \sec \left (f x + e\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^3/(d*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral((b^3*tan(f*x + e)^3 + 3*a*b^2*tan(f*x + e)^2 + 3*a^2*b*tan(f*x + e) + a^3)*sqrt(d*sec(f*x + e))/(d^2*
sec(f*x + e)^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \tan{\left (e + f x \right )}\right )^{3}}{\left (d \sec{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))**3/(d*sec(f*x+e))**(3/2),x)

[Out]

Integral((a + b*tan(e + f*x))**3/(d*sec(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \tan \left (f x + e\right ) + a\right )}^{3}}{\left (d \sec \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^3/(d*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e) + a)^3/(d*sec(f*x + e))^(3/2), x)